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Gaussian Limiting Behavior of the Rescaled Solution
to the Linear Korteweg�de Vries Equation with
Random Initial Conditions
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We analyze the asymptotic behavior of the rescaled solution to the linear
Korteweg�de Vries equation when the initial conditions are supposed to be
random and weakly dependent. By means of the method of moments we prove
the Gaussianity of the limiting process and we present its correlation function.
The same technique is applied to the analysis of another third-order heat-type
equation.
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1. INTRODUCTION

In this paper we consider the asymptotic behavior of suitably rescaled solu-
tions of third-order heat-type equations with random initial conditions,
represented by transformed, stationary, Gaussian processes.

Third-order heat-type equations emerge in the context of trimolecular
chemical reactions (Gardiner (1985), p. 299) and also as linear approxima-
tions of the celebrated Korteweg�de Vries (hereafter KdV) equation (see,
for example, Drazin and Johnson (1989), p. 18).
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Equations of the form

�u
�t

=c3

�3u
�x3 , x # R, t>0 (1.1)

where c3=\1, have been dealt with in Orsingher (1991) in connection
with the study of precesses governed by signed measures. The case where
c3=\i has been analyzed in Hochberg and Orsingher (1994).

Note that general higher-order heat-type equations have been con-
sidered by many authors: Krylov (1960), Daletski et al. (1961), Myiamoto
(1966), Hochberg (1978), Funaki (1979), Hochberg and Orsingher (1996),
Orsingher and Zhao (1999) and the references therein.

The rescaling procedures for partial differential equations with random
data have been studied by Avellaneda and Majda (1990), Ratanov et al.
(1991), Bulinski and Molchanov (1991), Deriev and Leonenko (1997),
Leonenko and Woyczynski (1998a, b), Gaudron (1998), Anh and
Leonenko (1999), Leonenko (1999) and many others. Our paper considers
the solution of the linear KdV equation with weakly dependent, random
initial conditions. Thus it is in the mainstream of the series of papers
devoted to the Burgers equation (Albeverio et al. (1994), Deriev and
Leonenko (1997), Leonenko and Woyczynski (1998a)) and to the classical
heat equation (Leonenko and Woyczynski (1998b)), where weakly depen-
dent, random initial conditions are assumed.

Our results here are limit theorems for non-linear transformations of
Gaussian random fields with weak dependence similar to those presented
in Breuer and Major (1983), Ivanov and Leonenko (1989), pp. 70�77, and
Leonenko (1999), pp. 227�243.

In Section 2 we present the structure of the correlation function of the
solution, with general random initial conditions, in terms of Airy functions.

By assuming suitable restrictions on the process representing the initial
conditions, we study, in Section 3 the asymptotic behaviour of the rescaled
solutions.

In principle, our technique can be applied also to the analysis of the
general KdV equation with random initial conditions.

The case of the randomly forced KdV equation, that is

�u
�t

+_u
�u
�x

+
�3u
�x3=w(t) (1.2)

where w(t), t # R is a stochastic process, has been studied by Orlowski and
Sobszyk (1989).
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2. SECOND ORDER ANALYSIS OF THE LINEAR KDV
EQUATION WITH RANDOM INITIAL DATA

We first consider the linear KdV equation

�u
�t

=&
�3u
�x3 , t>0, x # R (2.1)

subject to the random initial condition

u(0, x)='(x) (2.2)

Clearly Eq. (2.1) coincides with (1.2) where _=0, w(t)=0.
The random process '='(x, |), | # 0, x # R, defined on a suitable,

complete probability space (0, F, P), is assumed to be measurable, mean-
square continuous, with mean E'(x)=M(x).

The process '(x)&M(x) is weakly stationary and then '(x) possesses
the following spectral representation (P-a.s.)

'(x)=M(x)+|
+�

&�
exp[i*x] Z(d*) (2.3)

where Z=Z(2), 2 # B(R) is a complex-valued random measure such that
E |Z(2)|2=F(2), F is the spectral (bounded) measure on the measurable
space (R, B(R)) and the stochastic integral in (2.3) is viewed as an L2

integral with control measure F.
The covariance function of the process ', by the Bochner�Khinchin

Theorem, possesses the spectral representation

B(x)=cov('( y), '( y+x))

=|
+�

&�
exp[i*x] F(d*), x # R (2.4)

The fundamental solution to Eq. (2.1) can be represented in one of the
following forms (see Drazin and Johnson (1989), Orsingher (1991)):

u0(t, x)=
1

2? |
+�

&�
e&i:x&i:3t d:=

1
? |

�

0
cos(:x+:3t) d:

=
1

- ?

1
3

- 3t
Ai \ x

3
- 3t + (2.5)
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where

Ai(x)=
1

- ? |
�

0
cos \:x+

:3

3 + d:, x # R

is the Airy function of first kind (see Bleistein and Handelsman (1986)).
By means of the steepest-descent method it has been proved (see

Accetta and Orsingher (1997)) that the fundamental solution has the
following asymptotic behaviour

u0(t, x)t
x&1�4t&1�4

2 - ? 4
- 3

exp {&
2

3 - 3
x3�2t&1�2= , x � +�

and

u0(t, x)t
|x|&1�4 t&1�4

- ? 4
- 3

cos { 2

3 - 3
|x| 3�2 t&1�2&

?
4= , x � &�

Thus, for any t>0, u0(t, x) converges to zero exponentially fast as x �
+� and oscillating as x � &�, alternating negative and positive values.
Thus u0(t, x) is asymmetric and signed. We note that the fundamental solu-
tion to the second-order equation is non-negative and to the fourth-order
one is signed, nevertheless both of them are symmetric.

By the linearity of Eq. (2.1) the solution to the initial-value problem
(2.1)�(2.2) can be written down as follows

u(t, x)=|
+�

&�
'(x& y) u0(t, y) dy

=|
+�

&�

1
2? |

+�

&�
'(x& y) exp[&i:y&i:3t] d: dy

=(by (2.3))

=
1

2? |
+�

&�
|

+�

&�
M(x& y) exp[&i:y&i:3t] d: dy

+
1

2? |
+�

&�
d: |

+�

&�
dy |

+�

&�
Z(d*) exp[i*x&i*y&i:y&i:3t]
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=
1

- ? |
+�

&�

M(x& y)
3

- 3t
Ai \ y

3
- 3t + dy

+|
+�

&�
d: |

+�

&�
Z(d*) exp[i*x&i:3t] $(:+*)

=
1

- ? |
+�

&�

M(x& y)
3

- 3t
Ai \ y

3
- 3t+ dy+|

+�

&�
exp[i*x+i*3t] dZ(*)

(2.6)

where

$(:+*)=
1

2? |
+�

&�
e ix(:+*) dx

is the Dirac's delta function.
It is straightforward from (2.6) that

Eu(t, x)=
1

- ? |
+�

&�

M(x& y)
3

- 3t
Ai \ y

3
- 3t+ dy

=
1

- ? |
+�

&�

M( y)
3

- 3t
Ai \x& y

3
- 3t + dy

We assume that the random process ' has sample paths such that the func-
tion (2.8) satisfies (2.1) with probability one and Eu(t, x) exists for any t
and x.

From (2.6) it is possible to extract the expression of the covariance
function of the random field u=u(t, x):

cov(u(t, x), u(t$, x$))=|
+�

&�
exp[i*(x&x$)+i*3(t&t$)] dF(*)

=|
+�

&�
cos[*(x&x$)+*3(t&t$)] dF(*) (2.7)

Formula (2.7) shows that the random field u is stationary with respect to
space and time.

The covariance function (2.7) can be written down also in terms of the
Airy function and of the covariance function of the process '. By using the
real representation of the solution, namely

u(t, x)=
1

- ? |
+�

&�
'( y)

1
3

- 3t
Ai \x& y

3
- 3t + dy (2.8)
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for t>t$ we have

cov(u(t, x), u(t$, x$))

=|
+�

&�
|

+�

&�
cov('( y), '( y$))

1
?

Ai \x& y
3

- 3t + Ai \x$& y$
3

- 3t$ +
dy
3

- 3t

dy$
3

- 3t$

=
1
? |

+�

&�
|

+�

&�
B(z) Ai \ u

3
- 3t + Ai \x$&x+z+u

3
- 3t$ + dz

3
- 3t

du
3

- 3t$

=|
+�

&�
B(z) dz |

+�

&�
du { 1

2? |
+�

&�
exp[&i:u&i:3t] d:=

_{ 1
2? |

+�

&�
exp[&i:$(x$&x+z+u)&i:$3t$] d:$=

=
1

2? |
+�

&�
B(z) dz |

+�

&�
|

+�

&�
exp[&i:3t&i:$(x$&x+z)&i:$3t$]

_$(:+:$) d: d:$

=
1

2? |
+�

&�
B(z) dz |

+�

&�
exp[&i:3t+i:3t$+i:(x$&x+z)] d:

=|
+�

&�
B(z)

1

- ?

1
3

- 3(t&t$)
Ai \ x&x$&z

3
- 3(t&t$)+ dz (2.9)

Similarly, for t<t$, we have

cov(u(t, x), u(t$, x$))

=|
+�

&�
B(z)

1

- ?

1
3

- 3(t$&t)
Ai \ x$&x+z

3
- 3(t$&t)+ dz (2.10)

Finally, for t=t$, we have

cov(u(t, x) u(t$, x$))=B( |x&x$| ) (2.11)

Little changes are necessary for the analysis of the random field emerging
as solution to the equation

�v
�t

=
�3v
�x3 , t>0, x # R (2.12)
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subject to the random initial condition

v(0, x)='(x) (2.13)

The fundamental solution in this case reads

v0(t, x)=
1

2? |
+�

&�
ei:x+i:3t d:=

1
? |

�

0
cos(:x&:3t) d:

=
1

- ?

1
3

- 3t
Ai \&

x
3

- 3t + , t>0, x # R (2.14)

In force of the linearity of Eq. (2.12), the general solution to the initial-
value problem (2.12)�(2.13) can be written down as follows:

v(t, x)=|
+�

&�
'(x& y) v0(t, y) dy

=
1

- ? |
+�

&�

M(x& y)
3

- 3t
Ai \&

y
3

- 3t+ dy+|
+�

&�
exp[i*x&i*3t] dZ(*)

(2.15)

We assume that the random process ' has sample paths such that the func-
tion (2.15) satisfies (2.12) with probability one and Eu(t, x) exists for any
t and x.

Paralleling the calculations leading to (2.9), (2.10) and (2.11) we
obtain

cov(v(t, x), v(t$, x$))

={
B( |x&x$| ), for t=t$

(2.16)|
+�

&�
B(z)

1

- ?

1
3

- 3(t&t$)
Ai \ x$&x+z

3
- 3(t&t$)+ dz, for t>t$

|
+�

&�
B(z)

1

- ?

1
3

- 3(t$&t)
Ai \ x&x$&z

3
- 3(t$&t)+ dz, for t<t$

3. THE ASYMPTOTIC BEHAVIOUR OF THE RESCALED
SOLUTIONS

We now consider the rescaled solution to the linear KdV equation (2.1)
in the case where the initial condition is represented by the following process

'(x)=M(x)+G(!(x)), x # R (3.1)
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where M and G are real-valued, deterministic functions and !=!(x) is a
stationary, Gaussian process.

Our analysis is performed under the following assumptions:

A. The random process !=!(x) is real, measurable, mean-square
continuous, stationary and Gaussian with E!(x)=0, E!2(x)=1 and
covariance function R(x).

B. The function G: R � R is non-linear and such that EG2(!(0))<�.

As it is well-known, the function G can be expanded in series as
follows

G(u)= :
�

k=0

CkHk(u)
k !

, Ck=|
+�

&�
G(u) .(u) Hk(u) du (3.2)

where

Hm(u)=(&1)m eu2�2 d m

dum e&u2�2, u # R, m=0, 1, 2,...

are the Chebyshev�Hermite polynomials, which form a complete,
orthogonal basis in the Hilbert space L2(R, .(u) du) with

.(u)=
1

- 2?
exp {&

u2

2 = , u # R

We now further assume for the function G the following condition

C. G is such that there exist an integer value m for which Cm{0 and
C1=C2= } } } =Cm&1=0.

We pass on to the statement of our main result

Theorem 3.1. Suppose, that the random process ' has sample
paths such that the function (2.6) satisfies (2.1) with probability one and
Eu(t, x) exists for any t and x.

Let u=u(t, x), t>0, x # R, be the solution to the initial-value problem
(2.1)�(2.2) with the random initial data (3.1) satisfying the conditions A�C,
together with

|
+�

&�
|R(z)|m dz<� (3.3)
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then the finite-dimensional distributions of the random fields

U=(t, x)==&1�6 _u \t
=

,
x
3

- =+&Eu \t
=
,

x
3

- =+& , t>0, x # R, =>0 (3.4)

converge weakly, as = � 0, to the finite-dimensional distributions of the
Gaussian random field U(t, x), t>0, x # R, (stationary in space and time)
with mean EU(t, x)=0 and covariance function

EU(t, x) U(t$, x$)={
_2

- ?

1
3

- 3(t&t$)
Ai \ x&x$

3
- 3(t&t$)+ , for t>t$

(3.5)
_2

- ?

1
3

- 3(t$&t)
Ai \ x$&x

3
- 3(t$&t)+ , for t<t$

:
�

k=m

C 2
k

k!
Rk( |x&x$| ), for t=t$

where

_2= :
�

k=m

C 2
k

k ! |
+�

&�
Rk(z) dz (3.6)

Hint of the Proof. For the random variables

`= = :
k

j=1

*jU=(tj , xj )

= :
k

j=1

*j |
+�

&�
'( y) u0 \tj

=
,

x j

3
- =

& y+ 1
6

- =
dy

= :
k

j=1

*j |
+�

&�
:
�

r=m

Cr

r !
Hr(!( y)) u0 \t j

=
,

xj

3
- =

& y+ 1
6

- =
dy

= :
k

j=1

*j _ :
N

r=m

+ :
�

r=N+1
& Cr

r! |
+�

&�
Hr(!( y))

_
1

- ?

6
- =
3

- 3tj

Ai \xj& y 3
- =

3
- 3t j

+ dy

=`$=[r�N]+`="[r>N]=`$=+`="
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the convergence to

`= :
k

j=1

*jU(t j , x j )

must be studied.
To prove that `=" converges to zero, we need only some estimation of

var(`=").
In the analysis of the convergence of `$= the so called method of the

diagram must be applied; see Taqqu (1977), Ivanov and Leonenko (1989),
pp. 70�76, Breuer and Major (1983), Leonenko (1999), pp. 225�243, for
general references, and Deriev and Leonenko (1997), for a specific applica-
tion of the method.

Remark 3.1. In view of the asymptotic behaviour of the Airy func-
tion, we can conclude that the limiting covariance function (3.5) decreases
exponentially fast as x&x$ � +� and decreases oscillating as x&x$ � &�
(when t>t$). We can interpret this behaviour as a short-range dependence
for x&x$ � +� and a long-range dependence for x&x$ � &�.

For t<t$, the same behaviour of the covariance function is recorded
for x$&x � \�.

For the rescaled random field related to Eq. (2.12) we have the following
result, which can be proved similarly to the previous one:

Theorem 3.2. Let v=v(t, x), t>0, x # R, be the solution to the
initial-value problem

{
�v
�t

=
�3v
�x3 (3.7)

v(0, x)='(x)

where the random initial data ' satisfies the conditions A�C and the
assumption (3.3), and has sample paths such that function (2.12) satisfies
(3.7) with probability one and Ev(t, x) exists for any t and x. Then the
finite-dimensional distributions of the random fields

V=(t, x)==&1�6 _v \t
=

,
x
3

- =+&Ev \t
=

,
x
3

- =+& , t>0, x # R, =>0

(3.8)
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converge weakly, as = � 0, to the finite-dimensional distributions of the
Gaussian random field (stationary in space and time) with mean EV(t, x)
=0 and covariance function

EV(t, x) V(t$, x$)={
_2

- ?

1
3

- 3(t&t$)
Ai \ x$&x

3
- 3(t&t$)+ , for t>t$

(3.9)
_2

- ?

1
3

- 3(t$&t)
Ai \ x&x$

3
- 3(t$&t)+ , for t<t$

:
�

k=m

C 2
k

k !
Rk( |x&x$| ), for t=t$

where _2 is defined by (3.6).

Remark 3.2. The above theorems should be compared with the
result of Bulinski and Molchanov (1991), Albeverio et al. (1994), Deriev
and Leonenko (1997) and Leonenko and Woyczynski (1998b). In the last
one the random field X(t, x), t>0, x # R, emerging as solution to the heat
equation

�h
�t

=+
�2h
�x2 , +>0, t>0, x # R (3.10)

subject to the random initial condition (3.1) is examined.
Under the condition of Theorem 3.2 it is proved that the finite-dimen-

sional distributions of the random fields

X=(t, x)==&1�4 _h \t
=

,
x

- =+&Eh \t
=

,
x

- =+& , t>0, x # R, =>0

(3.11)

converge weakly to the finite-dimensional distributions of a Gaussian
random field X(t, x), t>0, x # R, with mean Ex(t, x)=0 and covariance
function

Ex(t, x) X(t$, x$)=
_2

- 4?+(t+t$)
exp {&

|x&x$|2

4+(t+t$)= (3.12)

Note that the limiting field X is stationary in space but not with respect to
time. This is the main difference between the limiting fields X and U.
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